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Abstract. Climate change is projected to significantly affect the vulnerability of forests across the western
United States to wildfires, insects, disease, and droughts. Here, we provide recent mortality estimates for
large trees for 53 species across 48 ecological sections using an analysis of 23,215 Forest Inventory plots and a
Random Forest classification model. Models were also used to predict mortality in future FIA inventories
under the RCP 4.5 emissions scenario. Model performance indicated species identity as the most important
predictor of mortality under both current and future scenarios, with contributions from climate and soil vari-
ables. Our results show relatively high levels of recent mortality in the Middle and Southern Rocky Moun-
tains driven by high mortality in Populus tremuloides, Pinus contorta, Pinus albicaulis, and Abies lasiocarpa. Low
levels of mortality were observed in several species, with <1% annual mortality observed throughout all
other sections. Future mortality was predicted to increase significantly for most species and correlated well
with recent mortality at the species level, but not at the plot level. These results suggest that future attempts
to model or predict widespread forest mortality would benefit from more research on vulnerable species and
that significant mortality events in some species may not be important for dynamics across all systems.
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INTRODUCTION2

Tree mortality is one of the most sudden and
significant demographic processes within
forested ecosystems (Waring 1987, Allen et al.
2010, Kosiba et al. 2018). Changes to future cli-
mate regimes are projected to increase the vul-
nerability of forested ecosystems to external
stressors and exacerbate tree death, especially in
the western USA (McDowell et al. 2008,

McDowell 2015 3, Romero-Lankao et al. 2014,
Smith et al. 2014, Kolb 2015). The degree to
which these climatic changes affect ecosystem
structure and function will depend partly on
what factors are driving current tree mortality
and what systems or species are most vulnerable.
Previous work on forest mortality has largely
been done in a small number of well-studied
model systems (Allen and Breshears 1998, Geils
et al. 2010, Hicke and Zeppel 2013). However,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 v www.esajournals.org 1 xxxx 2021 v Volume 0(0) v Article e03419

E C S 2 3419 Dispatch: 1.2.21 CE: Arun Prasad RA

Journal Code Manuscript No. No. of pages: 24 PE: Karpagavalli C.R.

info:doi/10.1002/ecs2.3419
http://creativecommons.org/licenses/by/4.0/


regional and continental studies are needed in
order to accurately predict future impacts on
ecosystem processes such as carbon cycling and
community succession (Hartmann et al. 2018).

Extensive work in plant physiological ecology
suggests that future forests will be threatened by a
hotter, drier climate that causes death by water
stress or increases mortality risk from insects and
fire (Jiang et al. 2013, McDowell 2015, Kolb et al.
2016). Less work has attempted to answer the
challenging question of where and how severe
these threats will manifest, although modeling
work generally supports these predictions. For
example, one recent study assessed drought and
fire risk across the western USA through 2049
using a simulation model and predicted that for-
ests in the low- and middle-elevation desert south-
west and southern Rocky Mountains (36% of the
study area) will face serious threats from drought
and fire (Buotte et al. 2019). Longer term predic-
tions also exist; in one such study, forest mortality
in the Sierra Nevada was predicted up to the
2090s but predicted future mortality rates varied
strongly depending on what environmental vari-
ables were used in the model (Das et al. 2013).
Although models have provided novel and valu-
able insight, few studies have attempted to predict
mortality risk using empirical data on observed
tree mortality despite the utility in this approach
in a broader framework for generating new
hypotheses and advancing the general under-
standing of forest mortality (Meir et al. 2015).

Causes of tree mortality in the western USA
commonly include drought, disease, insect
attack, windthrow, and competition (Lutz and
Halpern 2006, Geils et al. 2010, Long and Lawr-
ence 2016, Choat et al. 2018). Many of these cau-
sal agents are co-occurring and coupled
(McDowell et al. 2011, van Mantgem et al. 2018).
Few studies to date have attempted to assess
multiple co-occurring mortality agents at regio-
nal or larger extents in addition to predicting
future mortality (Berner et al. 2017, Buotte et al.
2019). For example, Berner et al. determined
mortality rates across the western United States
from 2003 to 2012 for harvest, fire, and insect
attack under the influence of water stress but did
not attempt to predict future mortality (Berner
et al. 2017). Nonetheless, the cause of tree death
is important for understanding their interactions
and their relationship to overall forest mortality

as well as how forests will respond to climate
change in the future (McDowell et al. 2011).
The Forest Inventory and Analysis (FIA) pro-

gram is a national inventory program conducted
regularly by the United States Forest Service
(USFS) and that provides a regular re-measure-
ment inventory of individual trees. Previous
research has utilized FIA demography data to
answer questions related to several mortality
agents including fire, bark beetles and other
insects, hurricanes, and drought (Klos et al. 2009,
Thompson 2009, Negrón-Juárez et al. 2010, Pugh
et al. 2011, Shaw et al. 2017). Therefore, FIA data
are well suited to examine recent and future tree
mortality across the western United States. Tink-
ham et al. (2018) provide a thorough overview of
FIA data, sampling procedures, and applications.
In this study, we used FIA tree inventory data

to assess the following broad research questions
and associated hypotheses about forest mortality
across the western USA:

1. What environmental and biological factors
are significantly related to recently observed
forest mortality rates? We hypothesize that
precipitation and temperature variables are
most important to recent mortality rates due
to their relationship to drought, disease, and
insect mortality.

2. What explains the cause of tree death for
recent data? We hypothesize that cause of
tree death is also driven by precipitation
and temperature variables due to their rela-
tionship to drought and insect mortality.

3. How do mortality rates change under future
emissions scenarios? Future mortality rates
are expected to increase under future cli-
mates in accordance with previous work on
mortality in western U.S. forests.

4. How does cause of tree death change under
future climates? We hypothesize insect mor-
tality will increase through the previously
documented direct influence of increased
temperature on insect life cycles.

MATERIALS AND METHODS

Experimental design, climate, and soil data
FIA established a systematic grid of inventory

plots to monitor U.S. forests in 2000 (Smith 2002).
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This population of plots is censused every 5
(eastern USA) to 10 (western USA) years using a
rolling inventory that remeasures 10% (western
USA) or 20% (eastern USA) of the plots per year.
The first such set of rolling inventories in the
western USA was conducted from 2000 to 2005,
with re-measurements beginning in 2010. Here,
we define a census interval as two sets of rolling
inventories that include an initial inventory and
a re-measurement inventory. With at least two
sets of inventories (one census interval), we are
able to calculate demographic rates, including
mortality. We used the first such census interval
in FIA data to calculate our recent mortality rates
using all plots that have been remeasured at least
once. Assuming the inventories proceed as
scheduled, the next set of rolling inventories will
begin in 2020 and will involve a second re-mea-
surement of trees originally measured in 2000.
This third rolling inventory will complete a sec-
ond census interval and allow for another calcu-
lation of demographic rates across the FIA study
design. Here, our predicted future mortality rep-
resents a forecast of demographics in this second
census interval.

Tree- and stand-level explanatory variables were
taken directly from individual tree (TREE) and
inventory (PLOT) data tables. We limited consider-
ation to the 53 most common tree species due to
restrictions imposed by our analysis software. This
reduced our total sample size by <0.9% of all avail-
able trees. Condition tables in FIA data contain
spatially referenced plot information at the within-
plot level such as slope and aspect in order to bet-
ter characterize within-plot heterogeneity; here, we
reference these condition tables to assign condition
variables to individual trees. Aspect was trans-
formed to topographic solar-radiation index to
avoid data circularity (Roberts and Cooper 1989,
Cremers and Klugkist 2018).

In order to assess tree mortality over many dis-
parate ecosystems and tree communities, we
included coded information on the physio-
geographic identity of plot locations in the form
of ecological section codes assigned by the USFS
(Cleland et al. 2007). Ecological sections are
unique qualitative spatial delineations designed
to group land area by similar structural,
eco-physiological, and ecological attributes and
provide a setting to interpret tree demographic
processes (Cleland et al. 2007, McNab et al.

2007). Sections are further nested within pro-
vinces. Here, ecological sections were excluded if
they were represented by less than 60 plots to
improve model performance and statistical relia-
bility. This eliminated 301 plots from 9 ecological
sections from our analysis.
Tree-level analysis was conducted on all plot

trees >12.7 cm diameter at breast height (1.37 m)
at the time of the first inventory. Mortality was
calculated according to the following equation:

Mortality rate ¼ Ndead=Ntotalð Þ � 100ð Þ=time

where Ndead is the number of dead trees for a
given species or plot, Ntotal is the total number of
trees, and time is the interval between censuses
(to the nearest 0.1 year) according to the value of
the FIA re-measurement period variable (Burril
et al. 2018). To be counted toward a plot-level
mortality rate, an individual tree was required to
be observed alive at the initial inventory and
observed dead at the subsequent re-measure-
ment inventory. Trees with unknown status at
the second inventory or trees observed dead at
both inventories were excluded from both dead
and total tree tallies. Trees observed dead but
subsequently observed alive were assumed alive.
Finally, we excluded dead trees missing a field-
assigned cause of death. Overall, irregularly
reported stems represented <0.04% of total sam-
ple trees, and we assumed their exclusion did
not bias our results. Partially forested plots were
included if at least 1 candidate tree was present
on the plot. Mean and median tree count per plot
was 28.48 and 25, respectively. We further quan-
tified the growing environment of each tree by
including measures of plot-level live stem den-
sity at the time of the first inventory and total
tree basal area aggregated to the plot level. We
also attempt to quantify relative tree maturity by
calculating a maturity index defined as the ratio
of tree diameter to the 95th diameter percentile
for its species across the entire experiment.
Tree-level mortality agent codes assigned by

FIA field crews include insect, disease, animal,
weather (includes windthrow and lightning
strike), vegetation (apparent suppression or com-
petition), and other (includes unknown and not
sure). Trees killed by stand-replacing distur-
bances (i.e., harvest and fire) were excluded from
live and dead tree tallies. Animal includes attack
or damage from non-insect macroscopic animals
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such as bears and beavers. Due to very low rates
of occurrence, animal mortality was grouped
with other for this study. The mortality agent
codes presented here are taken directly from FIA
metadata, and their definitions are specific to this
dataset (Burrill et al. 2018). Of special importance
is the distinction between weather as a mortality
agent code defined by FIA and our other climate
variables. The former is used in our analysis here
as a response variable, while the latter are used
as explanatory variables. Further details on FIA
methodology, variable metadata, and species tax-
onomy are available in version 8.0 of the FIA
field guide (Burrill et al. 2018).

Downscaled (4 km) climate data for six vari-
ables (precipitation, maximum temperature, min-
imum temperature, specific humidity, wind
speed, and downward surface shortwave radia-
tion) for 2000–2019 were sourced from the grid-
MET dataset (Abatzoglou 2013). For predictions
of future mortality, similarly downscaled (4 km)
Community Earth System Model climate vari-
ables were sourced from coarse-resolution Global
Climate Model outputs using a Multivariate
Adaptive Constructed Analogs approach (Gent
et al. 2011, Abatzoglou and Brown 2012, Kay
et al. 2015). Downscaled variables were further
used to derive 17 additional climate variables
related to plant eco-physiology (Rehfeldt 2006,
Rehfeldt et al. 2006). Derivation procedures were
taken directly from Rehfeldt (2006) except for the
calculation of day of year of last freezing date of
spring (SDAY) and day of year of the first freez-
ing date of fall (FDAY) which was modified to
the following procedure:

IfM7i or M8i ≥ 5.5 then

SDAYi ¼�1:08þ0:93S5iþ2:08M2iþ1:9M11i�3:85M12i

and

FDAYi ¼ 30:28þ0:92F5i�1:80M6iþ1:84M9i

else if M7i or M8i < 5.5 then

SDAYi ¼ 213:11�0:08M2
10i�2:65M9i�0:04S�2iM7i

and

FDAYi ¼ 211:97þ5:75M8i�9:23M6iþ0:05F�2iM6i

where Mni is the mean temperature for the nth
(1–12) month and ith plot, Sxi is the interpolated
day of year that mean daily temperature first
reached x°C for the ith plot, and Fyi is the inter-
polated day of year that mean daily temperature

last remained above y°C for the ith plot. If M1i

was above 6.8°C, then SDAYi was set to 0, while
if M12i was above 7.5°C, then FDAYi was set to
365. This modification corrects for unreasonably
late spring freezing and unreasonably early fall
freezing at low to mid-elevations across the
study area.
Climate variables were calculated for each plot

based on the mean value for the 10 yr previous
to the re-measurement inventory year. Soil vari-
ables were taken from 250-m resolution SoilGrids
maps and weighted profile averages from 0 to
30 cm depth (Hengl et al. 2017). Additionally,
standard deviation of each climate variable over
this 10-yr interval was included in each model to
help account for variability in climate at each plot
location.

Study area and initial plot composition
Data were analyzed from 588,012 and 486,122

trees for recent and future mortality, respectively,
tallied on 23,215 and 22,477 plots located in Cali-
fornia, Colorado, Idaho, Montana, New Mexico,
Nevada, Oregon, Utah, and Washington states.
Plots were distributed through 12 ecological pro-
vinces and 48 ecological sections (Cleland et al.
2007). Large provinces included the Cascade
Mixed Forest, Sierra Steppe, and Middle Rocky
Mountain Steppe provinces which contained
31.91%, 16.73%, and 14.35% of all trees, respec-
tively, for a combined 62.99% of all trees. Mean
plot count by section was 967, with a maximum
of 4956 (Western Cascades) and minimum of 60
(Owyhee Uplands). Species composition included
35 conifer species in 11 genera. Douglas-fir (Pseu-
dotsuga menzeisii) was by far the most common
species, representing 23% of all trees and twice
that of the next most abundant Pinus contorta
represented by 11% of all trees.

Random Forest model building
Random Forest classification models were con-

structed on tree-level mortality data (Breiman
2001, Cutler et al. 2007, Birch et al. 2015). Two
models were built to predict (1) which trees
would die during the next FIA census interval
and (2) what mortality agent would kill the trees
that were predicted dead. The response variable
was a binary dead/not dead (TRUE/FALSE)
condition observed at the second inventory for
the first model and mortality agent code
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(AGENTCD) for the second model. Mortality
agent models predicted mortality on only the
trees that were observed dead or predicted dead
by the primary mortality model.

With imbalanced data, Random Forest models
favor predictions of the dominant class at
expense of the subdominant classes to reduce
overall model error (Chen et al. 2004). In this
study, live trees were randomly under-sampled
to equal the number of trees in the smallest mor-
tality class. Class imbalance sampling was not
stratified by tree size or species, but diameter
and species distributions in the final training
dataset were very similar to the overall dataset.
Under-sampling resulted in 206,568 trees
(35.13% of total trees) used for training of the
first mortality model and 23,215 (44.20% of total
dead trees) trees used for training of the second
model.

Models were cross-validated against out-of-
bag samples for individual trees. Preliminary
analysis suggested this was similar in robustness
to cross-validation using a random subset of the
training data, while model predictive perfor-
mance improved slightly with the inclusion of
all available data in the training dataset. We
evaluated model performance using the overall
percent of out-of-bag observations correctly
classified, classification accuracy for each class
group, user’s and producer’s accuracy as well as
using the area under the receiver operating char-
acteristic (ROC) curve (Breiman 2001, Fawcett
2006).

Variable importance in reducing model error
was assessed as the mean difference in out-of-
bag error rate before and after predictor variable
permutation (Liaw and Wiener 2002). While vari-
able importance measures can be a useful assess-
ment of overall variable performance, they can
be biased toward certain classes of variables and
do not examine how variables influence pre-
dicted values (Strobl et al. 2008). To help quantify
the relationship between explanatory variables
and their influence on predicting mortality, med-
ian feature contributions were calculated for
important variables (Palczewska et al. 2013). A
positive feature contribution for a given explana-
tory variable indicates that the value of the vari-
able directs the forest to assign a positive
predicted value. In our models, the positive pre-
dicted value was set as “tree predicted dead” for

the overall mortality model and “tree killed by a
given mortality agent” for the mortality agent
model. A negative feature contribution directs
the model toward other levels of the predicted
value—"tree predicted alive” and “tree killed by
any other mortality agent.”
Variables used to train the model and their

units are given in Appendix S1: Table S1. We uti-
lized the R packages randomForest, rfFC, and
rfUtilities during model building and evaluation
(Liaw and Wiener 2002, Murphy et al. 2010, Evans
et al. 2011, Palczewska and Robinson 2015).
Future mortality was calculated by running

updated climate and stand data through trained
Random Forest models. Tree diameter at the re-
measurement census was used for tree diameter
in future calculations, and tree maturity index
was re-calculated using this updated tree diame-
ter value. Stand density and plot basal area were
also re-calculated using updated re-measurement
census data. Soils data were not updated for
future calculations.

Other comparisons between groups
Mann-Whitney U-tests were performed on

pairs of provinces and sections, as well as
between predicted and recent mortality rates, to
test for statistically significant differences (Hol-
lander and Wolfe 1973). Provinces are reported
with significant differences from province
means, while sections are reported with signifi-
cant differences relative to other sections within
their province. Significant differences between
recent and future mortality for species were
assessed using Fisher’s chi-squared test of inde-
pendence on the proportion of trees dead within
a species (Newcombe 1998). Significance values
from multiple comparisons were adjusted to
reduce false discovery rate (Benjamini and Hoch-
berg 1995). All statistics were evaluated in R ver-
sion 3.6.3 (R Core Team 2020).

RESULTS

Recent mortality rates and model performance
Overall mortality varied widely across

ecosystems and between species (Fig. Fig 11, Tables Table 11,
Table 22). Relatively high (>1% yr−1) mortality rates

were observed in the Southern, Middle, and
Northern Rocky Mountains and were generally
significantly higher than in other regions
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(Table 1). Species in these sections with elevated
mortality included Abies lasiocarpa, Populus
tremuloides, P. contorta, and Pinus albicaulis, the
last of which had the highest mortality rate of
any species at 2.2% yr−1 (Table 2). All sections
with >1% mortality occurred in the Middle and
Southern Rocky Mountains (Table 1). Sections in
the Cascade Mixed Forest Province, generally
contiguous with the productive wet temperate
forests of the Pacific Northwest, had intermediate
mortality rates of between 0.58% and 0.78%.
These rates were principally driven by the mod-
erate mortality rates for the dominant conifers
Tsuga heterophylla and P. menzeisii at 0.44% and
0.47%, respectively. The lowest recent mortality
rates occurred in the semi-arid sections of the
Great Basin and Colorado Plateau and in some

sections within California. Low mortality rates in
the Sierra and Klamath Mountains were driven
by low species rates and large sample sizes for
Pinus ponderosa and Abies concolor, with a smaller
contribution from species in the genus Quercus.
Notably, some elevated-mortality species occur
in regions that did not show high overall forest
mortality, such as Abies magnifica and Quercus
gambelii.
Mortality model prediction accuracy (PCC)

during training was 71.3% with class error rates
for alive and dead trees of 27.8% and 29.5%,
respectively. Cohen’s Kappa and the area under
the receiver operating characteristic (AUC) curve
were 0.43 and 0.71, respectively. User’s and pro-
ducer’s accuracy for predicting dead trees was
71.7% and 70.5%, indicating similar errors of

Fig. 1. Map of recent mortality calculated from FIA census data. Mortality rates are calculated over one FIA
census interval and annualized to yearly rates. Polygons outline ecological sections and are colored by mean
recent mortality rate aggregated over all plots within a section (n ≥ 60).
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omission and co-omission, that is, balanced mod-
els. Contrary to expectations, model accuracy
was most improved by the inclusion of species
identity and ecological section rather than soil or
climate variables (Fig.Fig 2 2). Diameter of the tree at
the previous inventory, tree maturity index and

total plot basal area at the previous inventory
were more important than all but two climate
variables, although less critical than species iden-
tity and ecological section. Climate variables of
importance were largely related to temperature,
especially variables describing the timing and

Table 1. Recent and future mortality rates (% year−1) for ecological provinces and sections across the western
USA.

Province† Section‡ Recent§ Future¶ Difference#

California Coastal Chaparral Forest and
Shruba

Central California Coast 0.42 1.01 +0.60*

California Coastal Range Open Woodlanda Central California Coast Rangesa 0.41 0.84 +0.44NS

California Coastal Range Open Woodland Southern California Mountain andb Valley 0.61 1.73 +1.12**
California Coastal Steppeb Northern California Coast 0.41 0.95 +0.54***
Cascade Mixed Forestc Eastern Cascadesa 0.58 1.54 +0.96***
Cascade Mixed Forest Northern Cascadesb 0.78 2.77 +1.99***
Cascade Mixed Forest Oregon and Washington Coast Rangesb 0.63 2.07 +1.43***
Cascade Mixed Forest Western Cascadesb 0.63 2.28 +1.65***
Intermountain Semi-Desertd Blue Mountain Foothillsa 0.17 0.61 +0.44***
Intermountain Semi-Desert Columbia Basinb 0.28 0.82 +0.53NS

Intermountain Semi-Desert Eastern Basin and Rangeab 0.24 1.05 +0.80*
Intermountain Semi-Desert Northwestern Basin and Rangeab 0.27 0.95 +0.68**
Intermountain Semi-Desert Owyhee Uplandsab 0.15 1.20 +1.05*
Intermountain Semi-Desert and Deserta Bonneville Basina 0.28 1.23 +0.95***
Intermountain Semi-Desert and Desert Monoa 0.52 1.36 +0.84***
Intermountain Semi-Desert and Desert Northern Canyonlandsb 0.58 2.73 +2.15***
Intermountain Semi-Desert and Desert Southeastern Great Basina 0.29 1.01 +0.72***
Intermountain Semi-Desert and Desert Uinta Basinab 0.22 0.57 +0.34NS

Middle Rocky Mountain Steppece Beaverhead Mountainsa 1.51 3.80 +2.29***
Middle Rocky Mountain Steppe Belt Mountainsa 1.74 3.74 +1.99***
Middle Rocky Mountain Steppe Blue Mountainsb 0.56 2.26 +1.71***
Middle Rocky Mountain Steppe Challis Volcanicscd 1.15 4.72 +3.57***
Middle Rocky Mountain Steppe Idaho Batholithc 0.90 3.56 +2.66***
Middle Rocky Mountain Steppe Northern Rockies and Bitterroot Valleyd 1.24 3.52 +2.29***
Nevada-Utah Mountains Semi-Deserta East Great Basin and Mountainsa 0.29 1.52 +1.23***
Nevada-Utah Mountains Semi-Desert Tavaputs Plateaua 0.49 1.8 +1.31***
Nevada-Utah Mountains Semi-Desert Utah High Plateaub 0.81 2.76 +1.95***
Nevada-Utah Mountains Semi-Desert West Great Basin and Mountainsa 0.26 1.34 +1.08***
Northern Rocky Mountain Forest-Steppee Bitterroot Mountainsa 0.87 2.56 +1.69***
Northern Rocky Mountain Forest-Steppe Flathead Valleya 0.68 2.32 +1.64***
Northern Rocky Mountain Forest-Steppe Northern Rockiesa 0.89 3.48 +2.59***
Northern Rocky Mountain Forest-Steppe Okanogan Highlanda 0.75 2.29 +1.54***
Pacific Lowland Mixed Forestb Puget Trougha 0.63 1.69 +1.06***
Pacific Lowland Mixed Forest Willamette Valleyb 0.55 0.97 +0.42**
Sierran Steppeb Klamath Mountainsab 0.51 2.04 +1.53***
Sierran Steppe Modoc Plateauc 0.37 1.21 +0.83***
Sierran Steppe Northern California Coast Rangesad 0.53 1.52 +0.99***
Sierran Steppe Northern California Interior Coast Rangese 0.20 0.52 +0.32NS

Sierran Steppe Sierra Nevadad 0.68 2.08 +1.40***
Sierran Steppe Sierra Nevada Foothillsb 0.89 1.50 +0.61**
Sierran Steppe Southern Cascadesb 0.45 1.04 +0.58***
Southern Rocky Mountain Steppef North Central Highlands and Rocky

Mountainsabc
1.25 3.31 +2.06***
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severity of frosts (Fig. 2, Appendix S1: Table S1).
Variables related to water availability were sec-
ond to temperature variables, with the most
important climate variable (summer moisture
index) being strongly related to temperature.
Standard deviations of climate variables were
much less important than mean values, although
variables with important means had generally
more important standard deviations. Soil vari-
ables were generally unimportant.

Important variables contributed unequally to
the probability of assigning a tree as either alive
or dead (Fig.Fig 3 3). Species was the strongest contrib-
utor in predicting dead trees, with the contribu-
tion to predicting live trees supported mostly by
climate variables related to winter frost and low
temperatures as well as tree size. Contributions
were also unequal among species, with contribu-
tions to predicting dead trees larger in the genus
Pinus; P. contorta, P. albicaulis, and Pinus monticola
especially (Fig.Fig 4 4). The only other conifers with
significant contribution to predicting dead trees
were in Abies: A. lasiocarpa, A. lasiocarpa var. arizon-
ica, and A. magnifica. Among hardwoods, P. tremu-
loides was the third-strongest contributor to
predicting dead trees after the less common Betula
papyrifera and Chrysolepsis chrysophylla. The most
important species for predicting live trees were
principally slow-growing conifers in the genus
Juniperus along with P. menzeisii and Thuja plicata.
Juniperus had low overall mortality rates, while P.
menzeisii had very large sample sizes and are most

frequently encountered in regions with low over-
all mortality (Table 2). In contrast to congenerics,
P. ponderosa and Pinus jeffreyi were significantly
related to predicting live trees.

Agent mortality and model performance
Recent mortality rates caused by individual

agents averaged from 0.04% yr−1 to 0.28% yr−1,
with the highest rates coming from disease
(0.19% yr−1) and insects (0.28% yr−1) as hypothe-
sized. Agent model prediction accuracy during
training was 62.8% with class error rates of
31.4% (disease), 19.3% (insect), 33.6% (other),
27.3% (vegetation), and 36.3 % (weather).
Cohen’s Kappa was 0.62. User’s accuracy ranged
from 65.9% (weather) to 76.4% (insect) and was
similar to producer’s accuracy, which ranged
from 63.7% (weather) to 80.3% (insect). Insects
and disease accounted for 48.7% and 27.3% of
total deaths, respectively. Other and vegetation
accounted for 9.2% and 8.0% of total mortality,
while weather was the least prevalent agent with
6.8% of total deaths. Variable importance in the
agent mortality model was similar to the overall
mortality model, with species identity (encapsu-
lating genetic factors) and ecological section
being the two most important variables to
improving model accuracy (Fig. Fig 55). Climate vari-
ables of importance were also similar and gener-
ally featured temperature- and frost-related
variables. Notably, minimum zero-degree-days
was an important feature for reducing model

(Table 1. Continued.)

Province† Section‡ Recent§ Future¶ Difference#

Southern Rocky Mountain Steppe Northern Parks and Rangesad 1.57 3.51 +1.93***
Southern Rocky Mountain Steppe Overthrust Mountainsbe 1.10 3.03 +1.92***
Southern Rocky Mountain Steppe South Central Highlandsd 1.85 3.82 +1.97***
Southern Rocky Mountain Steppe Southern Parks and Rocky Mountain Rangee 0.77 2.37 +1.60***
Southern Rocky Mountain Steppe Uinta Mountainsacd 1.49 3.52 +2.03***
Southern Rocky Mountain Steppe Yellowstone Highlandsbc 1.02 3.55 +2.52***

† Superscripts for provinces show significant differences between province mean mortality rates, where provinces that share
letter groups are not significantly different from one another (Mann–Whitney U-test, α = 0.05). Province names are described
in McNab et al. (2007) and mapped in Cleland et al. (2007).

‡ Superscripts for sections show significant differences in mean mortality rate between sections within a province, where
sections that share letter groups are not significantly different from one another (Mann–Whitney U-test, α = 0.05). Sec-
tion names are described in McNab et al. (2007) and mapped in Cleland et al. (2007).

§ Recent mortality is calculated as plot-level percent mortality over a 10-yr FIA census interval and annualized for yearly rates.
¶ Future mortality is calculated as plot-level percent mortality from predicted individual tree mortality over a 10-yr FIA cen-

sus interval immediately following the 10-yr recent census interval and annualized for yearly rates.
# Difference in percent mortality between future predicted mortality and recent mortality. Asterisks show statistical signifi-

cance (Mann-Whitney U-test) of with α = 0.05, 0.01, and 0.001 for *, **, and *** respectively. Comparisons with P > 0.05 are
indicated by NS.
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error in the agent mortality model (7th most
important) but not important for reducing model
error in the overall mortality model (25th most
important). Additionally, the standard deviation
of zero-degree-days was very important for
agent mortality and was the only climate vari-
ability feature to be one of the 15 most-valuable
features in either model (Figs. 2, 5).
Variables did not contribute equally to the

probability of predicting dead or live trees across
all mortality agents (Fig. 5, Table Table 33). Variables that
contributed strongly to predicting trees killed by
insect were total zero-degree-days based on mini-
mum temperatures (+0.93%), minimum tempera-
ture of the coldest month (+1.13%), and specific
humidity (+0.66%; Table 3). Specific humidity
also contributed to predicting disease deaths
(+0.26%), but so did owner group code (+0.22%).
Interestingly, no precipitation variables con-
tributed to predicting dead trees of any mortality
agent (Table 3). Mortality from weather was only
predicted by the length of the frost-free period
(+0.17%) and local physiographic class (+0.25%).
The only variable with a greater than 0.05% con-
tribution to predicting vegetation mortality was
species (+0.18%).

Tree mortality across the western USA under
future climates
Forest mortality across the study area was pre-

dicted to increase in most regions with the lar-
gest magnitude increases in the Southern and
Middle Rocky Mountains (+2.02−2.52% yr−1,
Fig. Fig 66, Table 1). Species-specific effects (including

Table 2. Recent and future mortality rates (% year−1)
for tree species across the western USA.

Species† Recent‡ Future§ Difference¶

Abies amabilis 0.63 2.34 +1.72***
Abies concolor 0.73 2.56 +1.84***
Abies grandis 0.72 2.51 +1.79***
Abies lasiocarpa 0.93 4.38 +3.46***
Abies lasiocarpa var.
arizonica

2.72 5.89 +3.18***

Abies magnifica 0.90 3.67 +2.77***
Abies procera 0.43 1.51 +1.08NS

Abies shastensis 0.75 2.91 +2.16***
Acer grandidentatum 0.41 1.17 +0.77***
Acer macrophyllum 0.45 0.71 +0.27NS

Alnus rubra 1.15 1.67 +0.52***
Arbutus menziesii 0.77 1.91 +1.14***
Betula papyrifera 2.17 5.59 +3.42***
Calocedrus decurrens 0.42 1.55 +1.13***
Cercocarpus ledifolius 0.36 2.98 +2.62***
Chamaecyparis lawsoniana 0.30 4.25 +3.95***
Chamaecyparis nootkatensis 0.11 2.60 +2.49***
Chrysolepis chrysophylla
var. chrysophylla

0.97 3.11 +2.14***

Juniperus monosperma 0.08 1.77 +1.69***
Juniperus occidentalis 0.04 0.29 +0.25NS

Juniperus osteosperma 0.03 1.03 +1.00***
Juniperus scopulorum 0.06 0.99 +0.93***
Larix occidentalis 0.60 2.93 +2.33***
Lithocarpus densiflorus 0.39 0.43 +0.04**
Picea engelmannii 1.44 2.84 +1.40***
Picea pungens 0.43 1.43 +1.00***
Picea sitchensis 0.59 2.69 +2.10***
Pinus albicaulis 2.20 5.84 +3.63**
Pinus aristata 0.40 3.96 +3.56***
Pinus contorta 2.03 3.64 +1.61***
Pinus edulis 0.36 1.61 +1.24***
Pinus flexilis 1.29 4.54 +3.25***
Pinus jeffreyi 0.24 0.70 +0.47NS

Pinus lambertiana 0.87 2.81 +1.94***
Pinus monophylla 0.37 0.98 +0.61***
Pinus monticola 1.28 4.57 +3.29***
Pinus ponderosa 0.43 0.91 +0.48***
Pinus sabiniana 0.57 0.48 -0.09NS

Populus balsamifera ssp.
trichocarpa

0.65 1.76 +1.11**

Populus tremuloides 1.86 4.16 +2.29***
Pseudotsuga menziesii 0.47 1.96 +1.49***
Quercus agrifolia 0.73 1.09 +0.37*
Quercus chrysolepis 0.2 0.44 +0.24*
Quercus douglasii 0.34 0.55 +0.21NS

Quercus gambelii 0.82 2.12 +1.30***
Quercus garryana 0.41 0.92 +0.51*
Quercus kelloggii 0.62 1.45 +0.83***
Quercus wislizeni 0.8 1.49 +0.69***
Sequoia sempervirens 0.09 0.96 +0.87*
Thuja plicata 0.12 1.43 +1.30***

(Table 2. Continued.)

Species† Recent‡ Future§ Difference¶

Tsuga heterophylla 0.44 1.61 +1.17***
Tsuga mertensiana 0.38 1.74 +1.36***
Umbellularia californica 0.22 0.39 +0.17NS

† Species identity and taxonomic information are found in
Burril et al. (2018), appendix F.

‡ Recent mortality is calculated as species-level percent
mortality over a 10-yr FIA census interval and annualized to
yearly rates.

§ Future mortality is calculated as species-level percent
mortality from predicted individual tree mortality and annu-
alized to yearly rates.

¶ Difference in percent mortality between future predicted
mortality and recent mortality. Asterisks show statistical sig-
nificance (Mann–Whitney U-test) of with α = 0.05, 0.01, and
0.001 for *, **, and *** respectively. Comparisons with
P > 0.05 are indicated by NS.
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Fig. 2. Feature importance for the overall mortality model. Units for each feature are given in Appendix S1:
Table S1. Variables are sorted according to their contribution to the decrease in overall model accuracy when they
are excluded from mortality predictions. Variables are colored according to their source: Dark gray location vari-
ables are sourced or derived from plot- or tree-level FIA data, light gray soil variables are sourced from 250 m
SoilGrids soils data, and black climate variables are sourced or derived from gridMET and MACA gridded cli-
mate data sets.
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genetic effects) were most important to future
mortality rates and were inflated by increases in
mortality for some species of up to 3.63% yr−1,
including P. albicaulis (+3.63%), P. contorta
(+1.61%), A. lasiocarpa (+3.46%), A. lasiocarpa var.
arizonica (+3.18%), and P. tremuloides (+2.29%,
Table 2). Only one species, Pinus sabiana, had a
non-statistically significant decrease in mortality
rates under future climates. Recent mortality at
the plot level was not correlated with future mor-
tality but showed a strong correlation by species
(r2 = 0.59; Fig.Fig 7 7). Broader patterns in future
rates for genera were visible, including low

future rates for Juniperus and Quercus and high
future rates for Pinus (Table 2). However, no
genus represented by multiple species was sig-
nificantly more or less vulnerable overall than
another. Pinus ponderosa and Pinus jeffreyi were
notable outliers within Pinus, with a less than
0.5% predicted increase (Table 2). Mortality rates
increased substantially under future climates for
all agents up to more than 0.6% yr−1 for disease
and Insect (Fig. Fig 88). The proportion of trees killed
by insect dropped from 48.6% to 27.6% and was
accompanied by increases in all other categories
(Fig. 8).

Fig. 3. Median contribution of each Random Forest feature to the probability of positively identifying a tree
that died during the census interval (y > 0) when assessed over the entire forest of classification trees. Units on
the y-axis are decimal probability.
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DISCUSSION

Factors most important to recent and future
forest mortality

Our results report on recent mortality rates for
many western U.S. forests and attempt to eluci-
date the important drivers of mortality in these
systems. Previous work on forest mortality has
largely focused on catastrophic mortality from
drought, fire, and insects, and we therefore
hypothesized that the most important predictors
of both recent and future mortality would be
environmental variables associated with precipi-
tation and temperature (Berner et al. 2017, Fettig
et al. 2019). Rather than climate or soil, species
identity was overwhelmingly our most impor-
tant predictor variable, which demonstrates the
important influence of genetics on tree mortality

(Rehfeldt et al. 2006). Although beyond the scope
of this study, the significant contribution of spe-
cies identity to our mortality predictions war-
rants more careful consideration of the influence
that genetics may have on overall tree mortality
as well as how cause of death may vary between
species subpopulations (Rehfeldt et al. 2006).
We found that large tree mortality in the west-

ern USA is likely to accelerate under future cli-
mate regimes, in general agreement with other
studies (Dale et al. 2001, Allen et al. 2010). This
result supports our hypothesis of increased mor-
tality under future climates, but drivers of these
increases may be nuanced. Specifically, the
importance of species identity in model perfor-
mance suggests that these changes will be heav-
ily dependent on species and ecosystem. In
support of this, future mortality was not

Fig. 4. Partial dependence of dead tree predictions on the species of the individual tree, when all other vari-
ables are controlled for. Units on the y-axis are expressed as the logit of the probability of predicting a dead tree,
with 0 representing an equal contribution to predicting alive and dead trees.
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correlated with past mortality at the plot level
but showed a strong dependence on species.
Large variability in future mortality rates sug-
gests that predicting how these forests change in
the future will require detailed knowledge of

how vulnerable species respond to environmen-
tal drivers. Perhaps more importantly, detailed
empirical data on demographic changes to U.S.
forests will be needed across large geographic
areas and over decadal time periods.

Fig. 5. Feature importance for the agent mortality model. Units for each feature are given in Appendix S1:
Table S1. Variables are sorted according to their contribution to the decrease in overall model accuracy when they
are excluded from predictions. Variables are colored according to their source: Dark gray location variables are
sourced or derived from plot- or tree-level FIA data, light gray soil variables are sourced from 250 m SoilGrids
soils data, and black climate variables are sourced or derived from gridMET and MACA gridded climate data
sets.
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Table 3. Median contribution of each feature to the probability of positively identifying a tree killed by insects,
disease, weather, vegetation, or other when assessed over the entire forest of classification trees.

Feature Insect Disease Weather Vegetation Other

Absolute depth to bedrock −0.02 −0.07 −0.06 −0.04 −0.07
Accu. precipitation, April–September −0.04 −0.06 −0.12 −0.03 −0.05
Accu. precipitation, April–September, SD −0.1 −0.07 −0.08 −0.06 −0.03
Accumulated precipitation −0.14 −0.07 −0.14 −0.12 −0.06
Accumulated precipitation, SD −0.23 −0.09 −0.08 −0.1 −0.08
Annual moisture index −0.01 −0.04 −0.09 −0.03 −0.06
Annual moisture index, SD −0.01 −0.05 −0.08 −0.03 −0.07
Average temperature in the coldest month −0.78 −0.04 0.06 −0.36 0.03
Average temperature in the coldest month, SD −0.01 −0.06 −0.07 −0.03 −0.08
Average temperature in the warmest month −0.04 −0.04 −0.05 −0.02 −0.11
Average temperature in the warmest month, SD −0.04 −0.05 −0.04 −0.03 −0.05
Bulk density fine earth −0.02 −0.06 −0.12 −0.11 −0.07
Cation exchange capacity of soil −0.03 −0.03 −0.11 −0.09 −0.05
Clay content mass fraction 0.02 −0.18 −0.03 −0.05 −0.11
Degree-days <0°C −0.7 0 −0.04 −0.73 0.05
Degree-days <0°C, SD 0.09 0.07 −0.33 −0.85 −0.04
Degree-days >5°C −0.34 −0.07 −0.06 −0.09 −0.09
Degree-days >5°C, SD −0.05 −0.06 −0.06 −0.05 −0.06
Day of year of the first freezing date of autumn −0.6 −0.16 0.07 −0.11 −0.03
Day of year of the first freezing date of autumn, SD −0.02 −0.07 −0.06 −0.04 −0.08
Day of year of the last freezing date of spring −0.64 −0.13 0.06 −0.05 −0.04
Day of year of the last freezing date of spring, SD −0.03 −0.06 −0.03 −0.02 −0.07
Day of year when sum of degree-days >5°C reaches 100 −0.24 −0.05 −0.02 −0.06 −0.02
Day of year when sum of degree-days >5°C reaches 100, SD −0.02 −0.03 −0.02 −0.02 −0.02
Length of frost-free period −0.95 −0.13 0.17 −0.12 −0.03
Length of frost-free period, SD −0.03 −0.07 −0.04 −0.03 −0.06
Local physiographic class −0.02 −0.05 0.25 −0.03 0.14
Maximum temperature −0.14 −0.07 −0.03 −0.03 −0.11
Maximum temperature in the warmest month −0.02 −0.04 −0.06 −0.03 −0.08
Maximum temperature in the warmest month, SD −0.03 −0.05 −0.04 −0.02 −0.1
Maximum temperature, SD −0.02 −0.04 −0.08 −0.01 −0.04
Minimum degree-days <0°C 0.93 0.34 −0.52 −1.25 −0.07
Minimum degree-days <0°C, SD −0.2 −0.05 −0.08 −0.08 −0.07
Minimum temperature 0.03 0.08 −0.16 −0.72 −0.04
Minimum temperature in the coldest month 1.13 0.48 −0.69 −1.49 −0.04
Minimum temperature in the coldest month, SD −0.02 −0.05 −0.09 −0.03 −0.1
Minimum temperature, SD −0.02 −0.06 −0.05 −0.02 −0.06
Owner group code −0.13 0.22 −0.08 0.09 −0.04
Physio-geographic section −0.09 −0.18 −0.02 −0.05 −0.27
Plot basal area at previous census −0.01 −0.1 −0.06 −0.03 −0.1
Plot basal area at re-measurement census −0.03 −0.08 −0.07 −0.04 −0.08
Plot slope −0.01 −0.04 −0.05 −0.04 −0.07
Saturated water content, theta-S −0.01 −0.05 −0.14 −0.1 −0.08
Silt content mass fraction −0.02 −0.14 −0.12 −0.02 −0.05
Soil organic carbon stock 0.06 −0.1 −0.15 −0.17 0.02
Soil pH × 10 in H2O −0.02 −0.05 −0.04 −0.03 −0.17
Solar radiation −0.04 −0.24 −0.02 0.03 −0.43
Solar radiation, SD 0.09 −0.07 −0.14 −0.22 −0.17
Species −0.53 0.17 0.35 0.18 0.9
Specific humidity 0.66 0.26 −0.35 −1.05 −0.02
Specific humidity, SD −0.01 −0.03 −0.01 −0.06 −0.19
Stand density at previous census −0.01 0.01 −0.03 −0.08 −0.04
Sum of >5°C degree-days within the frost-free period −0.16 −0.06 −0.06 −0.05 −0.13
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Species-specific life-history traits, especially
tree age, likely contributed heavily to mortality
predictions. This was supported by unequal spe-
cies contributions to predicting mortality as well
as significant variability in observed and pre-
dicted mortality rates (Fig. 4, Table 2). While tree
age itself may not be directly impacting mortality
through age-related senescence, low stem turn-
over in long-lived trees complicates interpreta-
tion between some of our species. For example,
relatively high mortality rates may be normal for
some short-lived (~100 yr) early successional
species such as A. rubra or P. tremuloides (Har-
rington et al. 1994, Mitton and Grant 1996). Con-
versely, long-lived tree species such as P.
menzeisii or members of Juniperus may live more
than 1000 yr and may not die for some time after
the onset of lethal environmental or biotic stress
(Alexander et al. 2018). Differences in life-history
traits may partly be responsible for the strong
dependence of mortality predictions on species
identity but seem unlikely to contribute to our
predictions of mortality under future climates. In
support of this, we found that our maturity index
variable was the 4th most important variable for
reducing model error in our first mortality model
and contributed significantly to predicting live
trees. Other important life-history traits may
include vulnerability to host-specific pathogens
—P. monticola and P. albicaulis; for example, both
had high recent and future mortality rates and
previous research implicates bark beetles and
white pine blister rust as major contemporary
disturbances throughout the range of these spe-
cies (Geils et al. 2010, Jacobi et al. 2018).

Alternatively, some species or populations may
currently be in the midst of a widespread die-
back due to anthropogenic climate change that is
pushing them past critical environmental stress
tolerance thresholds despite apparently normal
mortality for the ecosystem or region (Huang
et al. 2015, Kolb 2015). Our results somewhat
agree with previous work that suggests future
forest mortality may be a widespread phe-
nomenon, but we emphasize that some species
and regions may be disproportionately affected
(Allen et al. 2010, Kane et al. 2014, McDowell
and Allen 2015). Future efforts to mitigate the
effects of anthropogenic climate change should
focus on active management or conservation of
key species or populations, and future efforts to
model mortality risk in western U.S. forests
should emphasize plant functional traits or phys-
iology common to vulnerable species, such as
current efforts to control white pine blister rust
in P. monticola and P. albicaulis (Geils et al. 2010,
Jacobi et al. 2018).
We assessed mortality rates for some well-

studied tree species and many other tree species
that, to our knowledge, do not have any pub-
lished mortality rates. The most common focal
conifer species in recent mortality work have
been conifers in the genera Abies, Pinus, and
Juniperus (Gaylord et al. 2013, Krofcheck et al.
2014, Mortenson et al. 2015, Fettig et al. 2019,
Flake and Weisberg 2019, Pile et al. 2019,
McDowell et al. 2019). We improve on previous
mortality research for these species by including
populations over wide areas, as well as including
species closely related to common focal species

(Table 3. Continued.)

Feature Insect Disease Weather Vegetation Other

Sum of >5°C degree-days within the frost-free period, SD −0.03 −0.05 −0.05 −0.04 −0.06
Summer moisture index −0.03 −0.06 −0.08 −0.03 −0.08
Summer moisture index, SD 0 −0.13 0 0.02 −0.21
Summer–winter temperature differential 0.23 0.05 −0.23 −0.47 0.01
Summer–winter temperature differential, SD −0.02 −0.06 −0.05 −0.03 −0.05
Topographic solar-radiation index −0.01 −0.04 −0.05 −0.03 −0.08
Tree diameter at previous census −0.05 −0.18 −0.19 0 −0.17
Tree maturity index −0.01 0.12 −0.07 −0.37 0.02
Volumetric coarse fragments −0.03 −0.08 −0.08 −0.04 −0.05
Wind speed −0.03 −0.03 −0.07 −0.03 −0.08
Wind speed, SD −0.01 −0.03 −0.06 −0.01 −0.16

Notes: Units are decimal probability × 102. Standard deviation of climate variables is indicated with an SD.
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that are less well studied. Future research should
incorporate these species to improve modeling
efforts and inform forest managers and policy-
makers.

Arguably the most well-studied forest dieback
is the recent widespread decline of quaking
aspen, P. tremuloides (Rehfeldt et al. 2009, Worrall
et al. 2010, Huang and Anderegg 2012, Anderegg
et al. 2013, Tai et al. 2017). Despite being one of
the highest recent mortality rates observed in our
dataset, our mean rate of 1.86% yr−1 was less
than mortality rates observed in other studies.
Part of this may be due to the spatial extent of
plots in our dataset—other studies tend to focus
on specific mortality events, localized to one for-
est or region. For example, Worrall et al. (2008)
found mortality rates of ~11% yr−1 in four stands

of P. tremuloides in Colorado, but this was in an
area of highly concentrated aspen mortality. Pre-
dicted future mortality rates were significantly
higher than recent rates as well as some future
rates predicted by other studies. For example,
Rehfeldt et al. (2009) used Random Forest to pre-
dict bioclimate envelopes for P. tremuloides and
suggested a decrease of 6–41% in available envel-
ope area by 2030, a 0.3–2% yr−1 mortality rate
that contrasts with our projected future rate of
4.16% yr−1 (Table 2). Nonetheless, P. tremuloides
will likely be one of the most at-risk western U.S.
tree species under future climates and may face
significant local and regional risk of extirpation
(Aitken et al. 2008). To reconcile differences in
the magnitude of predicted mortality for P.
tremuloides, future research should utilize

Fig. 6. Map of differences in mortality rate between recent forest mortality and mortality predicted under the
RCP 4.5 emissions scenario. Polygons outline ecological sections and are colored by mean difference in mortality
rate aggregated over all plots within a section.
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empirical predictions of future mortality as well
as modeled estimates for a more robust assess-
ment of emerging risks to western U.S. forests
(Meir et al. 2015).

Our recent mortality rates are generally lower
than previously published rates for other less
well-studied species. For example, Mortenson
et al. (2015) reported mortality rates in the Kla-
math range for A. magnifica, P. jeffreyi, P. contorta,
and A. concolor as 1.8% yr−1, 1.9% yr−1, 1.1%
yr−1, and 3.0% yr−1, respectively, compared with
0.90% yr−1, 0.24% yr−1, 2.03% yr−1, and 0.72%
yr−1 for the same species in this study. Our exclu-
sion of fire as a mortality agent probably lowers
our estimated and predicted rates for species in
fire-prone ecosystems such as the Klamath range
(Hagmann et al. 2013). However, we can extend
this work by noting that mortality rates are likely
to increase even further, especially for A. mag-
nifica (+3.66%) and P. contorta (+3.64%).
The partial dependence of species on predict-

ing live trees suggested some species that may be
less vulnerable under future climates, including
P. ponderosa and members of the genus Juniperus
or Quercus. While P. ponderosa in this study
showed a small increase in mortality rates rela-
tive to congenerics, other studies have observed
dramatic P. ponderosa mortality from drought
events at the southern end of its range (Allen and
Breshears 1998). These species may serve as good
models or keystone species when examining
future forest dieback—diebacks at low latitudes
or low elevations may portend similar events at
high latitudes or high elevations (Aitken et al.
2008). Alternatively, shifts in the distribution and
abundance of these species due to climate change
may occur in younger cohorts or in conjunction
with disturbance events such as fire (Kemp et al.
2019). Future work on forest mortality would
benefit from examining whole-range demo-
graphics of these species, especially in the con-
text of plant functional traits or population
genetics measured throughout a species range
(Rehfeldt et al. 2006).
Juniper mortality increased only moderately

under future climates in this study, confirming
previous work that suggests that juniper is
robust to die-off events (Table 2; Floyd et al.
2009). A significant body of work suggests that
in these systems, Pinus edulis, P. monophylla, and
P. ponderosa may have elevated-mortality rates
under future climates. Interestingly, our pre-
dicted increases in mortality rates are much
smaller in magnitude than other studies observ-
ing Pinus die-off events. This is probably because

Fig. 7. Scatterplot of recent mortality rates versus
future mortality for 53 large tree species across the
western USA; P < 0.01, r2 = 0.59. The thin gray line
represents a 1:1 reference between recent and future
mortality rates.

Fig. 8. Recent and future mortality rates for five
mortality agent classes. Bars are mean rates across
plots expressed as annualized plot mortality � 1 SE.
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our rates reflect mortality dynamics aggregated
throughout the species’ entire range, in contrast
to other studies that focus on mortality at their
edges (e.g., Allen and Breshears 1998). Future
work should focus on the consequences of these
marginal die-off events for Juniperus, for exam-
ple, type conversion to smaller-statured wood-
land or shrubland or loss of ecosystem services
such as carbon storage.

Other factors driving recent tree mortality and
mortality agents across the western USA

Tree diameter was the 3rd most important
variable for improving model accuracy and con-
tributed significantly to predicting alive trees.
Larger, longer-lived trees may be less vulnerable
to density-dependent mortality effects from com-
petition for water or nutrients (Luo and Chen
2011, Harmon and Pabst 2015). This is supported
by our finding that tree maturity and plot basal
area at either inventory were important for pre-
dicting live trees, although maturity was much
less important overall to reducing model error.
Nonetheless, tree size alone was not enough to
account for observed mortality rates and was
unlikely to be responsible for increases in mortal-
ity in the future (Uriarte et al. 2004, Zhang et al.
2013, Birch et al. 2015).

Ecological section was very important for
improving model accuracy but did not con-
tribute to dead tree predictions more than live
trees. This suggests that recent mortality rates in
the absence of catastrophic disturbance may be
further dependent on spatially correlated vari-
ables that were not included in this dataset. Sec-
tions are defined as an aggregate of geologic,
soil, and vegetative properties and may include
qualitative descriptors that do not continuously
vary along grids (McNab et al. 2007). While
major improvements to modeling forest mortal-
ity may involve species-specific parameteriza-
tions, variation in demographic rates across
space and between tree populations may present
an additional challenge that may require detailed
knowledge of tree eco-physiology (Bohner and
Diez 2020).

The most important climate variables were
related to temperature, especially variables
describing the timing and severity of winter tem-
peratures (Figs. 2, 5). Changes to winter temper-
atures as a result of anthropogenic climate

change may influence tree mortality rates, espe-
cially at high latitudes or at high elevations such
as those in the Rocky Mountains. Furthermore,
increases in warm-season temperature may
increase tree mortality through increased vapor-
pressure deficit and mortality from drought
stress (Park Williams et al. 2013). Interestingly,
water availability variables were much less influ-
ential in predicting mortality despite the strong
influence of precipitation on forest structure
throughout the western USA. Some previous
research suggests that temperature has a strong
relationship with tree drought stress due to its
contribution to vapor-pressure deficit (Adams
et al. 2017), indicating that increased air tempera-
ture may have a direct influence on tree mortality
independent of future changes to precipitation
regimes. Combined with our results here, this
may indicate that Rocky Mountain forests may
be disproportionately affected by drier, warmer
temperatures, even when compared to other
regions in the western USA.
One potential explanation for the connection

between winter frosts and forest mortality is
the influence of snowpack. While we did not
include measures of snowpack in our analysis,
significant previous research has suggested that
changes to snowpack volume may be critical in
determining drought stress in montane envi-
ronments (Anderegg et al. 2013). Alternatively,
winter frosts may be influencing forest mortal-
ity by mediating the relationship between
insect outbreak and tree death (Weed et al.
2013). Previous research suggests mild winter
temperatures and moderate rainfall contribute
most to insect outbreak risk (Sidder et al. 2016).
Currently, the effect of insects on tree mortality
is difficult to model and many ecosystem and
earth system models do not explicitly include
insect effects. The relationship between temper-
ature and tree death may be greatly enhanced
in models of mortality if the more immediate
effects on snowpack and insect populations are
more carefully considered (Ayres and Lom-
bardero 2000).
Soil variables were relatively unimportant for

predicting mortality across this dataset and con-
tributed little to predicting alive or dead trees
(Figs. 2, 3). The two most important variables
were bulk density of the fine earth element and
available water-holding capacity. Both may be
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related to drought tolerance, water, or nutrient
availability through competition for below-
ground resources, although root competition is
generally less important for trees than for grasses
or forbs (Casper and Jackson 1997, Sperry et al.
1998, Kiaer et al. 2013). Our results suggest little
influence of soil variability on tree mortality,
although soils may exert indirect control on tree
demographics through other mechanisms such
as habitat filtering (Kraft et al. 2015).

Implications for future work examining forest
mortality

The strong influence of species identity on
reducing error in the predictive model indicates
that current attempts to model forest mortality
will likely require extensive parameterization at
the species or functional group level, even if gen-
eral plant eco-physiology is faithfully repre-
sented in model processes (Adams et al. 2013,
Meir et al. 2015). Buotte et al. (2019) recently
accomplished this by expanding the single ever-
green functional type utilized in a large earth
system model to 13 functional types that repre-
sent more distinct forest ecosystems. Conse-
quently, they reported significant improvements
in model performance. While parameterizing an
earth system model for 53 species is no doubt
challenging in some studies, careful selection of
species to include may put upper and lower
bounds on the impact that climate change will
have on western forests. Alternatively, new
advances in earth system models could more
explicitly link models to trait databases, allowing
rapid evaluation of many species simultaneously
(Kattge et al. 2011).

Methodological caveats and considerations
We deliberately chose to use FIA data collected

since year 2000. Specifically, we restricted our
analysis to trees measured under the National
Plot Design to improve the reliability and accu-
racy of our mortality estimates. While tree
records before 2000 are available from FIA, mor-
tality as a demographic process is most robustly
assessed using individual tree tracking that did
not begin until the National Plot Design (Smith
2002). Additionally, previous work has sug-
gested that the irregular inventory data prior to
2000 may be significantly less reliable in assess-
ing forest dynamics (Goeking 2015).

A potential source of error in our analysis
comes from the fuzzing and swapping of plot
coordinates on tribal and privately owned lands
(Tinkham et al. 2018). Plot coordinates in pub-
licly available FIA data are reported up to 1 km
away from their true locations in order to pre-
vent vandalism and to preserve the confidential-
ity of private landowner data (Tinkham et al.
2018). Additionally, 20% of plot coordinates
located on private land are swapped with other
plot coordinates within the same county (Burrill
et al. 2018). While this process may significantly
influence some spatial analyses, the high spatial
autocorrelation of our gridded independent vari-
ables (both climate and soil variables), smaller
contribution from plots on private land, and non-
parametric analysis likely reduced error from
plot perturbation well below other sources of
variability within the dataset (Coulston et al.
2006).
Our analysis of mortality agents in FIA has

significant limitations. Specifically, the limited
resolution on causes of mortality in our dataset
precludes strong conclusions about future mor-
tality for some species and regions. This issue
is made worse by the subjectivity often associ-
ated with assigning a causal agent in the field
up to several years after a tree has died (e.g.,
Bigler et al. 2007). Some causal agents such as
drought stress may not be immediately visible
to field technicians as a proximate cause of
death, and without detailed physiological mea-
surements we cannot know for certain what
killed a tree that we observed dead. Future
work utilizing FIA data would benefit from a
more robust understanding of the limitations
imposed by FIA mortality agent methodology,
including limits posed by on-the-ground accu-
racy that are independent of field technician
training.
In this study, we specifically excluded harvest

and fire mortality because of their disconnect
with ultimate causes of mortality at the tree level.
Nonetheless, both are major sources of mortality
within all forested systems in our study area
(Berner et al. 2017). Commercial tree harvest is a
primary cause of mortality in sections within the
Cascade Mixed Forest and likely disrupts cli-
mate-driven demographic processes that would
otherwise kill large mature trees (Berner et al.
2017). Ownership code importance provides
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some context on the interaction between logging
and other tree mortality, although in this study
was relatively unimportant. Fire was also
excluded from this study due to its stochastic
nature and localized area of effect, but much pre-
vious work has identified fire as a major driver
of tree mortality and ecosystem change in the
Sierra Nevada, Klamath Mountains, and other
parts of California. Our low mortality rates in
these regions may be the result of fire masking
tree death from other mortality agents due to the
complex interactions between fire, drought, and
temperature as well as the long interval between
FIA inventories (van Mantgem et al. 2018, Buotte
et al. 2019). Future work on tree mortality would
benefit from a better understanding of how fire
interacts with other mortality agents as well as
finer resolution of the relationship between local
fire severity and individual tree death.

CONCLUSIONS

Recent tree mortality in the western USA,
excluding mortality from logging and fire, has
been largely driven by insects and generalized
forest disease, but interspecific differences are
significant. This is probably due to differences in
how each species respond to each causal agent,
although genetics considerations were beyond
the scope of this study. Near-future mortality will
increase for some species, especially at middle
and high altitudes in the Middle and Southern
Rocky Mountains, but we predict less significant
increases in mortality from these agents across
the Cascades, Klamath Mountains, and Sierra
Nevada. Future research on other mortality
agents (e.g., fire) would likely improve future
mortality estimates, especially for the Sierra
Nevada. Despite increases in future mortality for
some species, climate and soil variables were
comparatively unimportant in predicting mortal-
ity across the entire dataset. This suggests that
predictions of future forest mortality will likely
be species- or system-specific. Modeling efforts
will likely benefit from the inclusion of vulnera-
ble species identified here, rather than blanket
parameterization of plant functional types. This
study especially highlights the need for more
long-term censuses of forest dynamics and fur-
ther evaluation of the utility of FIA mortality esti-
mates.
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